Bondage Numbers of Interval Graphs
 K. Dhanalakshmi , B. Maheswari

Abstract

Interval graphs have drawn the attention of many researchers for over 30 years. They are extensively studied and revealed their practical relevance for modelling problems arising in the real world. In this paper we study various bondage numbers of an interval graph such as cobondage number, efficient bondage number, nonbondage number and find some bounds for these parameters. Index Terms-Bondage number, Clique, Co-bondage Number Complement of a graph, dominating set, Efficient bondage Number, Interval Graph, Non bondage Number.

Subject Classification 68R10

1. Introduction

The theory of domination in graphs introduced by Ore [1] and Berge [2] is an emerging area of research in graph theory today. A survey on results and applications of dominating sets was presented by E.J.Cockyane and S.T. Hedentiemi [3]. A subset D of V is said to be a dominating set of G if every vertex in $V \backslash D$ is adjacent to a vertex in D. The domination number γ of G is the minimum cardinality of a dominating set. The cobondage number of G is the minimum cardinality among all sets of edges E_{1} in G^{c} for which $\gamma\left(\mathrm{G}+\mathrm{E}_{1}\right)<\gamma(\mathrm{G})$. This concept was introduced by V.R.Kulli et al. [4]

A set S of vertices in G is called an efficient dominating set if every vertex u in $\mathrm{V} \backslash \mathrm{S}$ is adjacent to exactly one vertex in S. The efficient domination number is the minimum cardinality of an efficient dominating set. This concept was introduced by Cockayne et al. [5]. The concept of an efficient bondage number was introduced by V.R.Kulli et al. [6]. Let E_{1} be the set of edges such that $\gamma_{e}\left(G-E_{1}\right)>\gamma_{e}(G)$. Then the efficient bondage number b_{e} of G is the minimum number of edges in E_{1}.
The nonbondage number $b_{n}(G)$ of a graph G is the maximum cardinality among all sets of edges $\mathrm{X} \subseteq \mathrm{E}$ such that $\gamma(\mathrm{G}-\mathrm{X})=\gamma(\mathrm{G})$. This concept was introduced by V.R. Kulli et al. [7].

2. Interval Graph

Let $\mathrm{I}=\{1,2, \ldots \ldots \ldots, \mathrm{n}\}$ be an interval family where each i in I is an interval on the real line and $i=\left[a_{i}, b_{i}\right]$ for $i=1,2, \ldots n$. Here a_{i} is called the left endpoint and b_{i} is called the right endpoint of i. Without loss of generality, we assume that all endpoints of the intervals in I are distinct numbers between 1 and 2 n . Two intervals i and j are said to intersect each other if they have non-empty intersection. Two intervals are said to overlap if they have non-empty intersection and neither one of them contains the other.

[^0]Let $G(V, E)$ be a graph. G is called an interval graph if there is a one-to-one correspondence between V and I such that two vertices of G are joined by an edge in E if and only if their corresponding intervals in I intersect.

Let G be the interval graph corresponding to the interval family I. Let nbd[i] be defined as the set of vertices adjacent to i including i. Let min(i) denote the smallest interval in nbd[i] and max (i) denote the largest interval in nbd[i]. Define Next (i) $=\mathrm{j}$ if and only if $b_{i}<a_{j}$ and there does not exist an interval k such that $b_{i}<a_{k}<a_{j}$. If there is no such j, we define Next (i) = null.

```
3. Algorithm : MDS - IG
Input : Interval family \(\mathrm{I}=\{1,2, \ldots \mathrm{n}\}\).
Output : Minimum dominating set of the
                interval graph G.
Step \(1:\) Let \(S=\{\max (1)\}\).
Step \(2: \quad \mathrm{LI}=\) The largest interval in S .
Step 3 : Compute Next (LI ).
Step \(4 \quad: \quad\) If Next \((\mathrm{LI})=\) null then go to step. 8
Step 5 : Find max( Next (LI ) ).
Step 6 : If max (Next (LI) ) does not exist
                                    then \(\max (\operatorname{Next}(\mathrm{LI}))=\operatorname{Next}(\mathrm{LI})\).
Step \(7: \quad S=S \cup \max (\operatorname{Next}(L I)))\) go
                                to step 2.
Step 8 : End.
4. Main Results
4.1 Co - Bondage Number
```

Theorem 1 : Let $\mathrm{D}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2} \ldots \ldots \mathrm{x}_{\mathrm{m}}\right\}$ be such that
$<N\left[x_{1}\right]-u_{1}>,<N\left[x_{2}\right]-u_{2}>, \ldots \ldots \ldots<N\left[x_{m}\right]>$ are
cliques of size 3 , where $u_{1}, u_{2} \ldots u_{m-1}$ are the last
vertices dominated by $\mathrm{x}_{1}, \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{m}-1}$ and also the first
vertices dominated by $x_{2}, x_{3} \ldots \ldots x_{m}$ respectively
Then
i) $\quad b_{c}=2$, if $\gamma=2$.
ii) $\quad b_{c}=1$, if $\gamma>2$.

Proof : Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots . . \mathrm{x}_{\mathrm{m}}, \mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \ldots . . \mathrm{u}_{\mathrm{m}-1}$ satisfy the hypothesis of the theorem.
Case 1 : Suppose $\gamma=2$. Let $\mathrm{D}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}\right\}$ be a dominating set of G satisfying the hypothesis.

Consider $E_{1}=\left\{\left(\mathrm{x}_{1}, \mathrm{x}_{2}-1\right),\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right\}$. Now x_{1} dominates all vertices of $N\left[x_{1}\right]$ and $N\left[x_{2}\right]$. Hence the dominating set in $G+E_{1}$ is $\left\{x_{1}\right\}$ only so that $\gamma\left(G+E_{1}\right)=1$.

We now prove that if we add a single edge e to G then $\gamma(\mathrm{G}+\mathrm{e})<\gamma(\mathrm{G})$. Join the vertices ($\mathrm{x}_{1}, \mathrm{x}_{2}-1$). Let $\mathrm{e}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}-1\right)$. Then x_{1} dominates $\mathrm{u}_{1}, \mathrm{x}_{2}-1$ in $\mathrm{G}+e$. But x_{1} does not dominate x_{2}, since x_{2} is the last vertex in $N\left[x_{2}\right]$. Hence $D=\left\{x_{1}, x_{2}\right\}$ is also a dominating set in $G+e$ so that $\gamma(\mathrm{G}+\mathrm{e})<\gamma(\mathrm{G})$.
For all other possibilities of addition of a single edge to G , we can see that $\gamma(\mathrm{G}+\mathrm{e})<\gamma(\mathrm{G})$.
Therefore $\gamma\left(G+E_{1}\right)<\gamma(G)$. Thus $b_{e}=2$.
Case 2: Suppose $\gamma>2$.
Join the vertices x_{1} and $x_{2}-1$. Let $e=\left(x_{1}, x_{2}-1\right)$. Consider the graph $G+e$. In this graph consider the vertex subset $S=\left\{x_{1}, u_{2}, u_{3}, \ldots . u_{m-1}\right\}$. Since D is constructed by the algorithm, it is clear that u_{1} is the last vertex dominated by x_{1} and u_{1} is the first vertex dominated by x_{2}. Since $x_{1}, x_{2}-1$ are joined by an edge, x_{1} dominates $\mathrm{x}_{2}-1$ also. That is x_{1} dominates all vertices that are dominated byx x_{2} except u_{2}.
Since u_{2} is the last vertex dominated by x_{2}, it is clear that $u_{2} \in\left\langle N\left[x_{3}\right]-u_{3}\right\rangle$. That is u_{2} dominates all these vertices in this clique. Likewise u_{i} dominates all vertices in $<N\left[x_{i+1}\right]-u_{i+1}>$ where $i=2,3$, m-2. It is obvious that $\mathrm{u}_{\mathrm{m}-1}$ is the first vertex dominated by x_{m} and hence u_{m-1} dominates all vertices in $\left\langle\mathrm{N}\left[\mathrm{x}_{\mathrm{m}}\right]\right\rangle$. Thus the set S dominates all vertices in $G+e$. Hence $\gamma(G+e) \leq|S|=m-1$.
But $\gamma(\mathrm{G})=m$, since D is the minimum dominating set constructed by the algorithm. Therefore $\gamma(\mathrm{G}+\mathrm{e}) \leq|\mathrm{S}|=\mathrm{m}-1<\mathrm{m}=|\mathrm{D}|=\gamma(\mathrm{G})$.
Thus $b_{c}(G)=1$.
Theorem 2 : Let $D=\left\{x_{1}, x_{2} \ldots \ldots \ldots \ldots . x_{m}\right\}$ be such that $<\mathrm{N}\left[\mathrm{x}_{1}\right]-\mathrm{u}_{1}>,<\mathrm{N}\left[\mathrm{x}_{2}\right]-\mathrm{u}_{2}>, \ldots \ldots . .<\mathrm{N}\left[\mathrm{x}_{\mathrm{m}}\right]>$ are cliques of size r, where $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \ldots \ldots . . . \mathrm{u}_{\mathrm{m}-1}$ are the last vertices dominated by $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots . . . \mathrm{x}_{\mathrm{m}-1}$ and also the first vertices dominated by $x_{2}, x_{3} \ldots \ldots x_{m}$ respectively. Then
i) $\quad b_{c}=\mathrm{r}-1$ if $\gamma=2$.
ii) $\quad b_{c}=r-2$ if $\gamma>2$.

Proof : Suppose $\gamma=2$. Let $\mathrm{D}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}\right\}$ be a dominating set of G satisfying the hypothesis. For $x_{1} \in D$, we draw additional edges between x_{1} and all vertices in the consecutive clique
$<\mathrm{N}\left[\mathrm{x}_{2}\right]-\mathrm{u}_{1}>$. As there are r vertices in any clique and we are joining x_{1} to all vertices of
$<\mathrm{N}\left[\mathrm{x}_{2}\right]-\mathrm{u}_{1}>$, there are $\mathrm{r}-1$ new edges added to the graph. Now the proof follows on similar lines to case 1 of Theorem 1 and hence $b_{c}=r-1$, if $\gamma=2$.

Suppose $\gamma>2$. For any $\mathrm{X}_{\mathrm{i}} \in \mathrm{D}$, we draw additional edges between x_{i} and all vertices in the
consecutive clique $<N\left[x_{i+1}\right]-u_{i}>$, except the vertex x_{i+1}. As there are r vertices in any clique and we are joining x_{i} to all vertices of $<N\left[x_{i+1}\right]-u_{i}>$, except x_{i+1} there are $r-2$ new edges added to the graph. Now the proof follows on similar lines to case 2 of Theorem 1 and hence $b_{c}=r-2$ if $\gamma>2$.

Note : When we are adding additional edges in G by joining non - adjacent vertices, say u, v where $\mathrm{u}<\mathrm{v}$, then we are extending the left endpoint of v such that $a_{v}<b_{u}$, since right endpoint labelling of vertices was already done.

4.2 Efficient Bondage Number

Theorem 1 : Let $S=\left\{x_{1}, x_{2} \ldots \ldots . . x_{m}\right\}$ be an efficient dominatingset of G such that $\left\langle\mathrm{N}\left[\mathrm{x}_{1}\right]\right\rangle,\left\langle\mathrm{N}\left[\mathrm{x}_{2}\right]\right\rangle, \ldots \ldots$ $<N\left[x_{m}\right]>$ are cliques of size 3 . Then $b_{e}=2$.
Proof : Let $S=\left\{x_{1}, x_{2} \ldots . . x_{m}\right\}$ be an efficient dominating set of G such that
$<\mathrm{N}\left[\mathrm{x}_{1}\right]>,<\mathrm{N}\left[\mathrm{x}_{2}\right]>, \ldots \ldots \ldots . .<\mathrm{N}\left[\mathrm{x}_{\mathrm{m}}\right]>$ are cliques of size 3 . Let $u_{1}, \ldots \ldots u_{m}$ be the last vertices dominated by $x_{1}, x_{2} \ldots \ldots \ldots \ldots . x_{m}$ respectively.

Since $<N\left[x_{i}\right]>$'s are cliques of size 3, we observe that for $<\mathrm{N}\left[\mathrm{x}_{1}\right] \quad>$, $x_{1}=1$ or 2 where $u_{1}=3$. For other cliques, obviously x_{i} 's are middle vertices, since any vertex in $V \backslash S$ is dominated by exactly one vertex in S .
Let $f=\left(x_{1}-1, x_{1}\right)$. Consider the graph $G-f$. We now construct an efficient dominating set S_{1} in G - f as follows. Since $N\left[x_{1}\right]$ is a clique, clearly u_{1} dominates $x_{1}-1, x_{1}$. So we take u_{1} into efficient dominating set of G - f. Now the vertex x_{2} can not be included into efficient dominating set of $G-f$, since the first vertex dominated by x_{2} is dominated by u_{1}. So we include $x_{2}-1$ into efficient dominating set of G-f. Now we remain the vertices $x_{3}, x_{4} \ldots \ldots . . x_{m}$ as it is. So the efficient dominating set in $G-f$ is $S_{1}=\left\{u_{1}, x_{2}-1\right.$, $\left.\mathrm{x}_{3} \ldots \ldots . . \mathrm{x}_{\mathrm{m}}\right\}$.

Obviously S_{1} is an efficient dominating set of G, since S is an efficient dominating set of G and the vertices in S_{1} are all vertices of S, except $x_{2}-1, u_{1}$. But as for the above discussion, no vertex of $\mathrm{G}-\mathrm{f}$ is adjacent to both $x_{2}-1$ and u_{1}. Therefore S_{1} is an efficient dominating set of $\mathrm{G}-\mathrm{f}$.

Now the cardinality of this efficient dominating set in $\mathrm{G}-\mathrm{f}$ is the same as S . Thus deletion of a single edge in G will not improve the cardinality of an efficient dominating set of G. Thus $b_{e} \neq 1$. Similar is the case if we deal with any other single edge in respective cliques.
Let $E_{1}=\left\{\left(x_{1}-1, x_{1}\right),\left(x_{1}, u_{1}\right)\right\}$. Consider $G-E_{1}$. Since $N\left[x_{1}\right]$ is a clique of size 3 , clearly x_{1} becomes isolated and thus included into efficient dominating set of $G-E_{1}$ as $S_{1}=\left\{x_{1}, u_{1}, x_{2}-1, x_{3} \ldots \ldots \ldots \ldots \ldots . . x_{m}\right\}$.

Since S is minimum and the insertion of u_{1}, x_{2-} 1 into S_{1} is essential because these vertices dominate the vertices that precede x_{3} and x_{1} is isolated, it follows that S_{1} is minimum in $G-E_{1}$.
Hence $\left|\mathrm{S}_{1}\right|=\mathrm{m}-1+2=\mathrm{m}+1$.
Therefore

$$
\gamma_{\mathrm{e}}\left(\mathrm{G}-\mathrm{E}_{1}\right)=\left|\mathrm{S}_{1}\right|=\mathrm{m}+1>\mathrm{m}=\gamma_{\mathrm{e}}(\mathrm{G})
$$

Thus $b_{e}=2$.
Theorem 2 : Let $S=\left\{x_{1}, x_{2}, \ldots \ldots . . x_{m}\right\}$ be an efficient dominatingset of G such that $\left\langle\mathrm{N}\left[\mathrm{x}_{1}\right]\right\rangle,\left\langle\mathrm{N}\left[\mathrm{x}_{2}\right]\right\rangle \ldots \ldots$. $<\mathrm{N}\left[\mathrm{x}_{\mathrm{m}}\right]>$ are cliques of size 4 or 5 . Then $\mathrm{b}_{\mathrm{e}}=3$.
Proof : Let $S=\left\{x_{1}, x_{2} \ldots \ldots \ldots \ldots \ldots . . x_{m}\right\}$ be an efficient dominating set of G such that
$<\mathrm{N}\left[\mathrm{x}_{1}\right]>, \ldots \ldots \ldots \ldots \ldots .<\mathrm{N}\left[\mathrm{x}_{\mathrm{m}}\right]>$ are cliques of size 4 . Let $\mathrm{u}_{1}, \mathrm{u}_{2} \ldots \ldots \ldots . . \mathrm{u}_{\mathrm{m}}$ be the last vertices dominated by $x_{1}, x_{2} \ldots \ldots . x_{m}$ respectively.
Since $<N\left[x_{i}\right]>$'s are cliques of size 4 , we observe that for $\left\langle N\left[x_{1}\right]\right\rangle, x_{1}=1$ or 2 or 3 where $u_{1}=$ 4. Let $x_{1}=2$. By Theorem 1, we have $b_{e} \neq 1$. Let $E_{1}=$ $\left\{\left(\mathrm{x}_{1}-1, \mathrm{x}_{1}\right),\left(\mathrm{x}_{1}+1, \mathrm{u}_{1}\right)\right\}$. Consider $\mathrm{G}-\mathrm{E}_{1}$. We now construct an efficient dominating set S_{1} in $G-E_{1}$ as follows. We give a selection of vertices in the first two cliques and we remain the vertices in other cliques as it is. Clearly $\mathrm{x}_{1}+1$ dominates $\mathrm{x}_{1}-1, \mathrm{x}_{1}$. So $\mathrm{x}_{1}+1$ is included into efficient dominating set of G-E1. Now we can not take u_{1} into efficient dominating set of $G-E_{1}$, since $x_{1}-1$ is adjacent to both u_{1} and $x_{1}+1$. So we include $u_{1}+1$ into efficient dominating set of $G-E_{1}$, where u_{1} is dominated by $u_{1}+1$. Here we note that $\mathrm{x}_{2} \neq \mathrm{u}_{1}+1$. Otherwise u_{1} is dominated by both $\mathrm{u}_{1}+1$ and x_{1}, a contradiction to the fact that S is an efficient dominating set of G.

Let $S_{1}=\left\{x_{1}+1, u_{1}+1, x_{3} \ldots \ldots \ldots \ldots . x_{m}\right\}$. Clearly S_{1} is an efficient dominating set of G and the cardinality of this efficient dominating set in $G-\mathrm{E}_{1}$ is the same as that of S. Since we have not disturbed the structure of cliques except the first one, and a single vertex only required to dominate the vertices in $\left\langle\mathrm{N}\left[\mathrm{x}_{1}\right]\right\rangle$ in G-E E_{1}, it follows that there will not be any efficient dominating set of $\mathrm{G}-\mathrm{E}_{1}$ with lower cardinality than S_{1}. Thus deletion of two edges in G also does not increase the cardinality of an efficient dominating set of $G-E_{1}$. Thus $b_{e} \neq 2$.

For other choices of x_{1} in the first clique and also choice of any two edges in other cliques, which include the choice of the edge $\left(u_{i}, u_{i}+1\right)$ does not increase the cardinality of efficient dominating set of $\mathrm{G}-\mathrm{E}_{1}$.

$$
\text { Let } E_{2}=\left\{\left(\mathrm{x}_{1}-1, \mathrm{x}_{1}\right),\left(\mathrm{x}_{1}, \mathrm{x}_{1}+1\right), \quad\left(\mathrm{x}_{1}+1, \mathrm{u}_{1}\right)\right\} .
$$

Consider G - E_{2}. We now construct an efficient dominating set S_{2} in $G-E_{2}$ as follows. We can not take both the vertices $x_{1}-1, x_{1}$ into S_{2}, because they dominate u_{1}. So choose either $x_{1}-1$ or x_{1} into S_{2}. Let us choose $x_{1} \in$ S_{2}. Now x_{1} dominates u_{1}. In order that $x_{1}-1, x_{1}+1$ are dominated, we choose $x_{1}+1$ into S_{2}. Now
we remain the vertices $x_{2}, x_{3} \ldots \ldots . . x_{m}$ as it is. So $S_{2}=$ $\left\{x_{1}, x_{1}+1, x_{2}, x_{3} \ldots . x_{m}\right\}$.

Clearly S_{2} is an efficient dominating set of G E_{2}. Further by the selection of the vertices into S_{2}, it is clear that there will not be any efficient dominating set of $\mathrm{G}-\mathrm{E}_{2}$ with lower cardinality than that of S_{2}.

$$
\text { Therefore } \begin{aligned}
\gamma_{e}\left(G-E_{2}\right)=\left|S_{2}\right|= & m+1 \\
& >m \\
& =|\mathrm{S}| \\
& =\gamma_{\mathrm{e}}(\mathrm{G}) .
\end{aligned}
$$

Hence $b_{e}=3$. Now consider cliques of size 5 . As in the previous discussion, we can see that deletion of any 2 edges from G, will not increase the cardinality of efficient dominating set in the resultant graph. Hence consider $\mathrm{E}_{1}=\left\{\left(\mathrm{x}_{1}, \mathrm{u}_{1}\right),\left(\mathrm{x}_{1}, \mathrm{x}_{1}+1\right),\left(\mathrm{x}_{1}-2, \mathrm{x}_{1}-1\right)\right\}$ where $\mathrm{x}_{1}=$ $3, u_{1}=5$.
Consider the induced subgraph $\left\langle\mathrm{N}\left[\mathrm{x}_{1}\right]\right\rangle$ in $\quad \mathrm{G}$ E_{1}. In this graph, no single vertex can dominate the other vertices. So we select 2 vertices, say $x_{1}-1, x_{1}$ into efficient dominating set of G-E E_{1}.

Let $S_{1}=\left\{x_{1}-1, x_{1}, x_{2}, x_{3} \ldots \ldots . x_{m}\right\}$. Clearly this is an efficient dominating set of $\quad G-E_{1}$ and we can easily see that there is no efficient dominating set of lower cardinality than S_{1} in $\mathrm{G}-\mathrm{E}_{1}$.

$$
\text { Hence } \gamma_{e}\left(G-E_{1}\right)=\left|S_{1}\right|=m+1
$$

$$
\begin{aligned}
&>\mathrm{m} \\
&=|\mathrm{S}| \\
&=\gamma_{\mathrm{e}}(\mathrm{G}) \\
& \mathrm{b}_{\mathrm{e}}(\mathrm{G})=3
\end{aligned}
$$

We now generalise the above result as follows.
Theorem 3 : Let $S=\left\{x_{1}, x_{2} \ldots \ldots \ldots \ldots . . x_{m}\right\}$ be an efficient dominating set of G such that $<\mathrm{N}\left[\mathrm{x}_{1}\right]$ $>, \ldots \ldots \ldots \ldots<\mathrm{N}\left[\mathrm{x}_{\mathrm{m}}\right]>$ are cliques of size $\mathrm{r}, \mathrm{r}>5$. Then $\mathrm{b}_{\mathrm{e}}=\mathrm{r}-2$.
Proof : Proof follows on similar lines to that of Theorem 2. Here in any clique $\mathrm{N}\left[\mathrm{x}_{1}\right]$, we delete $\mathrm{r}-2$ edges.
Theorem 4 : Let $S=\{u, v\}$ be a minimum efficient dominating set of G. Then $b_{e}=1$.
Proof : Let $S=\{u, v\}$ be an efficient dominating set of G. Since S is an efficient dominating set of G and we have right endpoint labelling, it is clear that the vertices preceeding to u will be dominated by u and suceeding vertices of u are dominated by v.

Consider the edge $f=(u-1, u)$ and the graph G - f. In this graph $\mathrm{u}-1$ is not dominated by u. Obviously $u-1$ is not dominated by v also. Then we have the following cases.
Case 1 : There may be a vertex $\mathrm{y}<\mathrm{u}-1$ such that y dominates $u-1$. Suppose there is no other vertex $t<u-1$ such that t also dominates $u-1$. Consider $S_{1}=\{y, u, v\}$. Clearly S_{1} is an efficient dominating set in G - f and hence $\mathrm{b}_{\mathrm{e}}=1$.

ISSN 2229-5518
Sub case 1 : Suppose there is a vertex $\mathrm{t}<\mathrm{u}-1$ such that t also dominates $u-1$. Again $S=\{y, u, v\}$ is an efficient dominating set of $G-f$. Hence $b_{e}=1$.
Sub case 2 : Suppose there is no vertex $y<u-1$ such that y dominates $u-1$. Then $u-1$ is an isolated vertex in $G-f$. Hence $S_{1}=\{u-1, u, v\}$ is a minimum efficient dominating set in G-f and thus $\mathrm{b}_{\mathrm{e}}=1$.

We have deleted an edge that is adjacent with u and proved that $b_{e}=1$. Similar is the case if we replace u by v or if we argue with both u and v.

4.3. Non - Bondage Number

Theorem 1 : If G is an interval graph then $b_{n}(G)=q-$ $p+\gamma(G)$, where p, q are the number of vertices and edges in G.
Proof : Let D be the minimum dominating set of G constructed by the Algorithm. Let v be any vertex of G. Consider an edge that is adjacent with v and a vertex of D. Likewise consider the set E_{1} of all edges that are incident with vertices of G and vertices of D. Then there are $p-\gamma$ such edges.

$$
\text { Consider } \mathrm{E}-\mathrm{E}_{1} \text {. Then }\left|\mathrm{E}-\mathrm{E}_{1}\right|
$$

$=q-(p-\gamma)=q-p+\gamma$. Let $X=E-E_{1}$. Consider the graph $G-X=G-E+E_{1}$. This graph contains only the edges that are in E_{1}. That is the set of edges which are incident with the vertices of D. Therefore the dominating set of this graph is nothing but the set D .
Hence $\gamma(G-X)=\gamma(G)$.
Thus $b_{n}(G)=|X|=\left|E-E_{1}\right|=q-p+\gamma$. The proof of the following corollary is immediate.

Corollary

Let G be an interval graph on n vertices such that G is a path. Then $\mathrm{b}_{\mathrm{n}}(\mathrm{G})=\gamma-1$.

5. Illustrations

Cobondage Number

Theorem 1

Case 2 :

Fig. 1 : Interval Family I

Fig. 2: Interval Graph G
The dominating set according to the algorithm is $\mathrm{D}=$ $\{3,6,9\}$.
Here $x_{1}=3, x_{2}=6, x_{3}=9, u_{1}=4, u_{2}=7$
Let $\mathrm{e}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}-1\right)=(3,5)$
Consider the graph G + e

Fig. 3 : $\mathrm{G}+\mathrm{e}$
The dominating set in $\mathrm{G}+\mathrm{e}$ is $\mathrm{D}_{1}=\{3,7\}$
Clearly $\gamma(\mathrm{G}+\mathrm{e})=2<\gamma(\mathrm{G})$
Thus $\mathrm{b}_{\mathrm{c}}=1$.
Efficient bondage number Theorem 4

Fig. 1 : Interval Family I

Fig. 2 : Interval Graph G
The efficient dominating set in G is $S=\{4,5\}$
Here $u=4, v=5, y=2, u-1=3, t=1$
Consider the edge, $\mathrm{f}=(\mathrm{u}-1, \mathrm{u})=(3,4)$
Consider G-f

Fig. 3 : G-f
The efficient dominating set in G - f is $\{2,4,5\}$ Thus $b_{e}=1$.

Nonbondage Number

Theorem 1

Fig. 1 : Interval Family I

Fig. 2 : Interval Graph G

The minimum dominating set according to the
algorithm is $D=\{2,6,9\}$
Here $V \backslash D=\{1,3,4,5,7,8\}$. Here $\gamma=3, p=9, q=11$
Let $E_{1}=\{(1,2),(2,3),(4,6),(5,6),(7,9)$,
$(8,9)\}$

6. REFERENCES

$E \backslash E_{1}=\{(3,4),(3,5),(4,5),(6,7),(7,8)\}$
Clearly $X=\left|E-E_{1}\right|=q-(p-\gamma)=11-(9-3)$

$$
=5
$$

Consider $\mathrm{G}-\mathrm{X}=\mathrm{G}-\mathrm{E}+\mathrm{E}_{1}$
$=\{(1,2),(2,3),(4,6),(5,6),(7,9),(8,9)\}$

Fig. 3 : Interval Graph G-E $+\mathrm{E}_{1}$
The dominating set in this graph is $\{2,6,9\}=\mathrm{D}$ only. Hence $b_{n}(G)=|X|=5$.
[1] O. Ore "Theory of Graphs", Amer. Math. Soc. Colloq. Publ. 38, Providence, 1962.
[2] C.Berge "Theory of Graphs" and its Applications, Methuen, London, 1962.
[3] E.J.Cockayne S.T.Hedetniemi-Towards a theory of domination in graphs, Networks 7 , 1977, 247-261.
[4] V.R.Kulli B.Janakiram- The cobondage number of a graph, Discussions Mathem-aticae, Graph Theory 16, 1996, 111-117.
[5] E.J.Cockayne B.L.Hartnell S.T.Hedet-niemi R.Laskar- Efficient domination in graphs, 1988, Clemson Univ., Dept. of Mathematical Sciences, Tech. Report, 558.
[6] V.R.Kulli N.D.Soner -Efficient bondage number of a graph. Nat. Acad.Sci. Letters, Vol.19, No. 9 and 10, 1996.
[7] V.R.Kulli B.Janakiram -The nonbondage number of a graph, Graph Theory Notes of New York, XXX:4 New York Academy of Sciences, 1996, 14-16.

[^0]: - Dept. of Mathematics, SPWD \& PG College, Tirupati

 E-mail: kalapatidhanalakshmi1@gmail.com
 Dept. of Applied Mathematics, SPMVV, Tirupati.
 E-mail: maherahul.55@gmail.com

